Crystal structure of sterically hindered symmetrical N, N donor ligand and transition metals complexes: spectral, preclinical studies and DFT studies


Schiff bases are important class of ligands. Schiff bases continue to occupy an important role as ligand in metal coordination chemistry [6-12]. Transition metal complexes prepared from such ligands have a variety of applications including biological, clinical, analytical and industrial and also these complexes are having important roles in catalysis and organic synthesis [1-5].

Vedecká časť: 

Due to the fascinating architectures and topologies, Schiff base transition metal complexes employing many different metal–ligand combinations have been extensively investigated over the last few years [13, 14]. One can tune the DNA binding and cleaving ability of a metal complex by changing the ligand environment. These studies are also important in determining the mechanism of metal ion toxicity [15, 16]. The literature clearly shows that the study of this diverse Schiff base complex system is linked with many of the key advances made in inorganic chemistry [17–24]. These complexes can also be found as key points in the development of inorganic biochemistry [18], catalysis [19, 20], medical imaging [21], optical materials [22], and thin films [23, 24]. Such compounds play an important role in the coordination chemistry related to catalysis and enzymatic reactions, magnetism, and molecular architectures [25-27]. Transition metal complexes mentioned above will be also studied with help to computational chemistry, which will help us determine bond character between metals and organic ligands, also electronic structure will be investigated. For this investigation we will use ORCA software package 4.0.1/4.2.1. [28, 29]

Socioekonomický a technologický dopad: 

Transition metal complexes are well known for their ability to interact with DNA leading to the cleavage of this biomolecule. Furthermore, such information can lead to the development of anti-cancer drugs which inhibit or restrict the growth of cancer cell by binding and damaging the genomic DNA of cancer cells [30] Many Schiff base complexes with metals have already proven their diverse spectrum of biological and pharmaceutical activities, such as antitumor [10], antioxidative, antiviral, antimicrobial and antineoplastic activities [31].

[1] X.M. Ouyang, B.L. Fei, T.A. Okamuro, W.Y. Sun, W.X. Tang, N. Ueyama, Chem. Lett. (2002) 362.
[2] A. Datta, N.K. Karan, S. Mitra, G. Rosair, Z. Naturforsch. 576 (2002) 999.
[3] C. Jayabalakrishnan, K. Natarajan, Trans. Met. Chem. 27 (2002) 75.
[4] H. Sharghi, M.A. Nasseri, Bull. Chem. Soc. (Jpn.) 76 (2003) 137.
[5] D. Arish, M.S. Nair, J. Coord.Chem., 63 (2010) 1619.
[6] H.L. Singh / Spectrochimica Acta Part A 76 (2010) 253.
[7] F. Maggio, A. Pellerito, L. Pellerito, S. Grimaudo, C. mansueto, R. Vitturi, Appl. Organomet. Chem. 8 (1994) 71.
[8] P.G. Devi, S. Pal, R. Banerjee, D. Dasgupta, J. Inorg. Biochem. 101 (2007) 127..
[9] C. Dendrinou-Samara, L. Alevizopoulou, L. Iordanidis, E. Samaras, D. Kessissoglou, J. Inorg. Biochem. 89 (2002) 89.
[10] E. Bermejo, A. Castineiras, I. Garcia, D.X. West, Polyhedron 22 (2003) 1147.
[11] S. Chandra, L.K. Gupta, Spectrochim, Acta Part A 62 (2005) 1089.
[12] K.S. Abou Melha, J. Enzym. Inhib. Med. Chem. 23 (2008) 493.
[13] J. Haiduc, F.T. Edelmann, Supramolecular Organometallic Chemistry, Wiley-
VCH, Weinheim, (1999).
[14] L. Meng, C. Fu, Z. Fei, Q. Lu, P. J. Dyson., Inorganica Chimica Acta 363 (2010) 3926.
[15] N. Ramana, R. Jeyamurugana, A. Sakthivela, L. MitubN. Raman., Spectrochim. Act. A 75 (2010) 88.
[16] R. Vijayalakshmi, M. Kanthimathi, V. Subramanian, B.U. Nair, Biochim. Biophys. Acta 1475 (2000) 157–162.
[17] R.H. Holm, J. Am. Chem. Soc. 82 (1960) 5632.
[18] E.C. Niederhoffer, J.H. Timmons, A.E. Martell, Chem. Rev. 84 (1984) 137.
[19] K. Srinivasan, P. Michaud, J.K. Kochi, J. Am. Chem. Soc. 108 (1986) 2309.
[20] W. Zhang, J.L. Loebach, S.R. Wilson, E.N. Jacobsen, J. Am. Chem. Soc. 112 (1990) 2801.
[21] J. Tisato, F. Refosco, F. Bandoli, Coord. Chem. Rev. 135 (1994) 325.
[22] J. Lacroix, Eur. J. Inorg. Chem. 2 (2001) 339.
[23] J. Nagel, U. Oertel, P. Friedel, H. Komber, D. Mobius, Langmuir 13 (1997) 4698.
[24] S.S. Sundari, A. Dhathathreyan, M. Kanthimathi, U.N. Balachandran, Langmuir
13 (1997) 4923.
[25] (a) S.J. Lippard, J.M. Berg, Principles of Bioinorganic Chemistry, University
Science Books, Mill Valley, CA, (1994).
[26] B.L. Small, R. Schmidt, Chem. Eur. J. 10 (2004) 1014.
[27] A.S. Ionkin, W.J. Marshall, J. Organomet. Chem. 689 (2004) 1057.
[28] Neese F. WIREs Comput Mol Sci (2012), 2 (1) 73-78.
[29] Neese F. WIREs Comput Mol Sci (2017), e1327.
[30] A. De, et al. Journal of Molecular Structure 1199 (2020) 126901
[31] Buldurun, K, et al Res Chem Intermed 46, 283–297 (2020)

Technická časť: 

Quantum chemistry program ORCA 4.0.1/4.2.1